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This study presents an analytical calculation method for the computation of the magnetic vector potential of an axisymmetric 

solenoid in the presence of an iron shield and a ferromagnetic core. In this study, the analysis of the current carrying coil in the 

presence of the ferromagnetic materials is treated as a boundary value problem. The solution approach is based on partitioning the 

solution domain into distinct regions. The effects of the iron parts are represented by the boundary conditions. The general form of the 

solution to the Maxwell’s equation in each region along with the corresponding boundary conditions is obtained using the Fourier 

analysis and separation of variables. The continuity of the magnetic vector potential as well as the magnetic field, on the interfaces 

between the regions, is taken into account by the interface conditions. The final solution to the boundary value problem is constituted 

by applying the interface conditions on the general solutions to the Maxwell’s equations. Finally, the magnetic vector potential is 

computed over the entire solution domain using the proposed analytical calculation method and the result is compared with the FEM. 

Index Terms— Boundary value problems, Maxwell equations, Solenoids. 

I. INTRODUCTION 

he two primary approaches to the modelling of the 

magnetic field inside the solenoids are the analytical 

approach and finite element method (FEM). The analytical 

approach is based on finding an analytical or semi-analytical 

solution to the electromagnetic boundary value problem [1], 

[2]. In contrary to the FEM, an analytical approach does not 

need major modifications to be applied to another system as 

long as the assumptions inherent in the derivation of the 

analytical results are not violated. The analytical study of the 

infinite and finite length solenoids was first performed by 

calculation of the magnetic field on the solenoid axis [3]. Such 

studies were followed by the off-axis magnetic field analysis 

of a solenoid by applying simplifying assumptions to the 

problem [4], [5].  The final solutions of such studies are 

presented in terms of the elliptic integrals or the Bessel 

functions [6]. Most of the studies, in this field, are on the 

solenoids without an iron core or any ferromagnetic material 

in the solution domain. Hence, such analytical results cannot 

simply be extended to the application of the solenoids in the 

electromagnetic actuators. In electromagnetic actuators 

(solenoid actuators), the operation of the system is based on 

the interaction of the current carrying coil and the iron core. 

Solenoid actuators are widely used in research, industrial and 

commercial applications. In special applications such as 

haptics and robotics an accurate model of the magnetic field 

inside the actuator is required to design a fast and precise 

model-based closed-loop force control system [7]. 

 The present study follows the boundary value problem 

approach to provide an expression for the magnetic field 

inside an electromagnetic solenoid actuator. The presented 

analytical calculation method is applied on a specific solenoid 

actuator used in automotive applications and the results are 

verified by the finite element method (FEM).  

II. MODEL FORMULATION 

The geometry of the electromagnetic actuator studied here 

is presented in Fig. 1. The system consists of a circular coil of 

rectangular cross section, an iron shield, a circular 

ferromagnetic core and air gaps. A cylindrical coordinate is 

considered by taking the z direction as the symmetry axis. The 

axial symmetry of the problem implies the independency of 

the solution to the 𝜃 direction thus the solution domain is 

located inside the rectangular region 0<r<R3 and 0<z<z3. The 

solution domain includes those elements involved in the 

magnetic field generation. The ferromagnetic elements are 

assumed to have infinite permeability, so the effects of the 

ferromagnetic elements (core and shield) are taken into 

account by applying the boundary conditions [7]. As a 

consequence, the solution domain consists of the coil    

(Region I) and the air gaps (Region II and Region III).  

The solution approach to the magnetic field analysis 

incorporates the definition of a magnetic vector potential in 

cylindrical coordinate denoted by A whose curl represents the 

magnetic flux density (magnetic field) B. The axial symmetry 

of the problem implies that the magnetic vector potential A 

has only one non-zero component which lies in the 𝜃 direction 

and denoted by AӨ which is a scalar. Knowing AӨ, the flux 

density B = [𝐵𝑟 , 𝐵𝜃 , 𝐵𝑧]
𝑇can be obtained as follows. 
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In a region whose permeability is uniform, the non-zero 

component of the magnetic vector potential AӨ is governed by 

the Poisson’s equation as below, 
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Fig. 1.  Geometry of the electromagnetic actuator studied here 
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Fig. 2.  (a) Boundary and interface conditions   (b) Analytical computation result   (c) FEM result 

 

 

 

where μ is the permeability and J is the current density. When 

no current passes through a region the Poisson’s equation (2) 

is transformed into the Laplace equation (∇2𝐴𝜃 = 0). 

 The solution domain of the problem is subdivided into three 

regions which are illustrated in Fig. 1. Hence, 
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where AI, AII and AIII  represent the tangential component of the 

magnetic vector potential (𝐴𝜃) at regions I, II and III, 

respectively. So it is clear that AI, AII and AIII are scalars. 

III. CALCULATION OF THE ANALYTICAL SOLUTION 

The Maxwell’s equations (3) at each region together with 

the boundary conditions applied on that region constitute a 

boundary value problem. Boundary conditions are the first set 

of conditions which are applied on the interfaces between the 

regions and the ferromagnetic materials. The second set of 

conditions are the interface conditions, which are defined to 

satisfy the continuity of the magnetic vector potential and the 

magnetic field in the interfaces between the regions. A 

summary of the boundary and continuity conditions involved 

in the solution procedure are presented in Fig. 2(a). The 

general form of the solution to the boundary value problems is 

obtained using the separation of variables along with the 

Fourier analysis. The general form of the solutions for AI, AII 

and AIII  are expressed by infinite series involving cosine and 

Bessel functions corresponding to the z and r directions, 

respectively [1]. The general solutions also include the 

integration constants which must be determined. Assuming 

that the N harmonic terms of the Fourier series are taken into 

account (i.e. the general solutions AI, AII and AIII are truncated 

at the Nth term), the general solutions include 5N+5 unknown 

integration constants [7]. Applying the interface conditions 

(continuity conditions) on the interfaces at r=R1, r=R2 and 

r=R3 provides 5N+5 linear equations which are used to 

calculate the unknown integration constants. Finally, 

substitution of the integration constants into the general 

solutions yields the final solution. The accuracy of the final 

solution is governed by series truncation order (N). 

The analytical calculation method proposed in the present 

study is applied on a linear electromagnetic actuator with 

known physical properties and the obtained distribution of the 

magnetic vector potential is presented in Fig. 2(b). The 

comparison between the proposed analytical computation 

method and the FEM (Fig. 2(c)) is performed by calculating 

the absolute value of the error at each node of the FEM mesh. 

 
Fig. 3.  Error between the result of the presented method and that of the FEM 

 

In Fig. 3, the mean and maximum value of the error is 

presented as a function of the number of harmonic terms (N) 

considered in the analytical computation. The good agreement 

between the results obtained from the proposed method and 

the FEM confirms the accuracy of the analytical computation 

approach presented here. 
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